Bayesian methods and maximum entropy for ill-posed inverse problems
نویسندگان
چکیده
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملGlobal Saturation of Regularization Methods for Inverse Ill-Posed Problems
In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by Neubauer [5]. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in t...
متن کاملMaximum Entropy Solution to Ill-posed Inverse Problems with Approximately Known Operator
We consider the linear inverse problem of reconstructing an unknown finite measure μ from a noisy observation of a generalized moment of μ defined as the integral of a continuous and bounded operator Φ with respect to μ. Motivated by various applications, we focus on the case where the operator Φ is unknown; instead, only an approximation Φm to it is available. An approximate maximum entropy so...
متن کاملHybrid Samplers for Ill-Posed Inverse Problems
In the Bayesian approach to ill-posed inverse problems, regularization is imposed by specifying a prior distribution on the parameters of interest and Markov chain Monte Carlo samplers are used to extract information about its posterior distribution. The aim of this paper is to investigate the convergence properties of the random-scan random-walk Metropolis (RSM) algorithm for posterior distrib...
متن کاملLearning, Regularization and Ill-Posed Inverse Problems
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1997
ISSN: 0090-5364
DOI: 10.1214/aos/1034276632